KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, www.wkret-met.com

Wkręt-met

PRODUCT DATA SHEET - WCF-VESF/WCF-VESF-E

Section 1. PRODUCT DESCRIPTION

Description

WCF-VESF is vinylester two-component (10:1 ratio) bonded anchoring system approved for use in uncracked concrete with medium performance level. Formulated free of styrene, WCF-VESF has a very low odour and is ideal for use in confined spaces and indoors. Suitable for both DIY applications and also professional use.

Storage

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+5°C to +25°C) out of direct sunlight. When stored correctly, the product shelf life will be 12 months from the date of manufacture.

Base materials

- -Uncracked concrete
- -Solid rock
- -Hard natural stone

Health & Safety

For health and safety information, please refer to the relevant Safety Data Sheet.

Wkret-met ICLIMAS HITTWA HITT

Accessories

- -Applicators
- -Mixing nozzles
- -Cleaning blow pump
- -Cleaning brushes
- -Extension tubes
- -Resin stoppers

Approvals & Tests

-ETA according to ETAG 001 -Part 1 and Part 5 , used as European Assessment Document (EAD) for uncracked concrete

Features

- -Suitable for use with close edge distance and small anchor spacings
- -Suitable for dry, wet & flooded holes with no loss of performance.
- -Reduced drilling diameters, 22mm for M20 and 26mm for M24; results in significant material and labour savings.
- -Variable embedment depths 8d to 12d
- -Available in single piston foil pack cartridges (300 ml & 410 ml) Uses/Applications
- -Canopies
- -Boilers
- -Bicycle Racks
- -Hand Rails
- -Safety Barriers
- -Balcony Fences
- -Racking
- -Machinery
- -Satellite Dishes

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów

tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, <u>www.wkret-met.com</u>

PRODUCT DATA SHEET – WCF-VESF/WCF-VESF-E

Section 2. WORKING & LOADING TIMES

WCF-VESF - Working & Loading Tin	nes		
Cartridge Temperature	T Work	Base Material Temperature	T Load
5℃	18 Minutes	5°C	145 Minutes
5°C to 10°C	10 Minutes	5°C to 10°C	145 Minutes
10°C to 20°C	6 Minutes	10°C to 20°C	85 Minutes
20°C to 25°C	5 Minutes	20°C to 25°C	50 Minutes
25°C to 30°C	4 Minutes	25°C to 30°C	40 Minutes
30°C	4 Millutes	30°C	35 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

VCF-VESF-E - Working & Loading	Times		
Cartridge Temperature	T Work	Base Material Temperature	T Load
10°C	30 Minutes	10°C	5 hours
10°C to 20°C	15 Minutes	10°C to 20°C	5 hours
20°C to 25°C	10 Minutes	20°C to 25°C	145 Minutes
25°C to 30°C	7,5 Minutes	25°C to 30°C	85 Minutes
30°C to 35°C	5 Minutes	30°C to 35°C	50 Minutes
35°C to 40°C	3,5 Minutes	35°C to 40°C	40 Minutes
40°C to 45°C	2 F Minutes	40°C to 45°C	35 Minutes
45°C	2,5 Minutes	45°C	12 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

Section 3. PHYSICAL PROPERTIES

				Physical Properties
Property		Value	Unit	Test Standard
Density		1.7	g/cm ³	ASTM D 1875 @ +20°C
Compressive Strength	24 hrs	70	N1/mm2	BS6319
Compressive Strength	7 days	75	N/mm²	P2021A
Tensile Strength	24 hrs	11	N/mm²	ASTM D 638 @ +20°C
rensile Strength	7 days	11.5	IN/mm-	A31W D 030 @ +20 C
Elongation at Break	24 hrs	0.12	%	ASTM D 638 @ +20°C
Elongation at break	7 days	0.15	70	A31W D 030 @ +20 C
Tanaila Madulus	24 hrs	3.4	ON1/ 2	ACTAID (200 @ +200°C
Tensile Modulus	7 days	4.5	GN/m ²	ASTM D 638 @ +20°C
Flexural Strength	7 days	28.3	N/mm²	ASTM D 790 @ +20°C
HDT	7 days	78	°C	ASTM D 648 @ +20°C

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów

tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, www.wkret-met.com

PRODUCT DATA SHEET – WCF-VESF/WCF-VESF-E

Section 4. CHEMICAL RESISTANCE

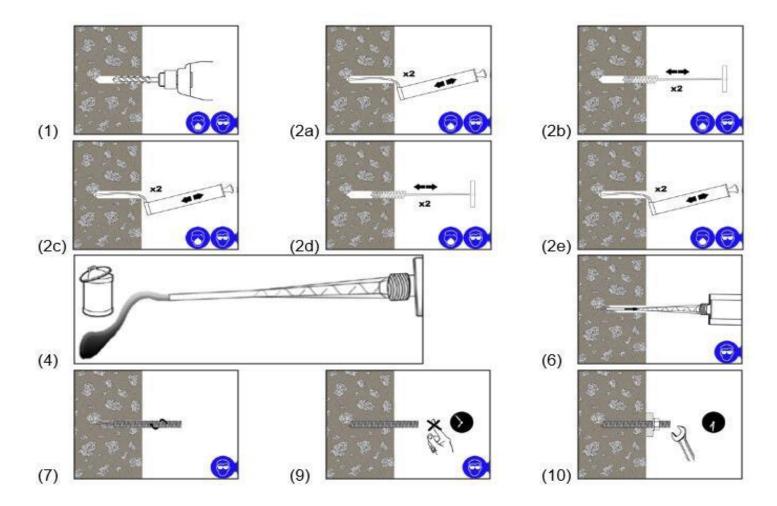
Chemical Resistance					
Chemical Environment	Concentration	Result	Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	С	Hexane	100%	С
Acetone	100%	×		10%	√
Aqueous Solution Aluminium Chloride	Saturated	✓	Hydrochloric Acid	15%	✓
Aqueous Solution Aluminium Nitrate	10%	√		20%	С
Ammonia Solution	5%	×	Hydrogen Sulphide Gas	100%	✓
Jet Fuel	100%	×	Linseed Oil	100%	✓
Benzoic Acid	Saturated	✓	Lubricating Oil	100%	✓
Sodium Hypochlorite Solution	5 - 15%	✓	Mineral Oil	100%	√
Butyl Alcohol	100%	С	Paraffin / Kerosene (Domestic)	100%	С
Calcium Sulphate Aqueous Solution	Saturated	✓	Phenol Aqueous Solution	1%	×
Carbon Monoxide	Gas	✓	Phosphoric Acid	50%	✓
Carbon Tetrachloride	100%	С	Potassium Hydroxide	10% / pH13	✓
Chlorine Water	Saturated	×	Sea Water	100%	С
Chloro Benzene	100%	С	Sulphur Dioxide Solution	10%	✓
Citric Acid Aqueous Solution	Saturated	✓	Sulphur Dioxide (40°C)	5%	✓
Cyclohexanol	100%	✓	Culphusia Asid	10%	✓
Diesel Fuel	100%	С	Sulphuric Acid	30%	√
Diethylene Glycol	100%	√	Turpentine	100%	С
Ethanol	95%	*	White Spirit	100%	✓
Heptane	100%	С	Xylene	100%	×

^{√ =} Resistant to 75°C with at least 80% of physical properties retained.

Section 5. SOLID SUBSTRATE INSTALLATION METHOD

Solid Substrate Installation Method

- 1 Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.
- 2. Thoroughly clean the hole in the following sequence using a brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a blow pump may be used: Blow Clean $x2 \rightarrow$ Brush Clean $x2 \rightarrow$ Blow Clean $x2 \rightarrow$ Brush Clean $x2 \rightarrow$ Blow Clean x2.
 - If the hole collects water, the current best practice is to remove standing water before cleaning the hole and injecting the resin. Ideally, the resin should be injected into a properly cleaned, dry hole.
- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.
- 6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.


C = Contact only to a maximum of 25°C. × = Not resistant.

PRODUCT DATA SHEET – WCF-VESF/WCF-VESF-E

- 8. Any exces resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Section 6. INSTALLATION PARAMETERS – THREADED RODS

Size	2		M8	M10	M12	M16	M20	M24	
Nominal Drill Hole Diameter	d _o	[mm]	10	12	14	18	22	26	
Diameter of Cleaning Brush	d _b	[mm]	14	14	20	20	29	29	
Torque Moment	T _{inst}	[Nm]	10	20	40	80	150	200	
h _{ef,min} = 8d		•	•	•			•	•	
Depth of drill hole	h ₀	[mm]	64	80	96	128	160	192	
Minimum Edge Distance	C _{min}	[mm]	35	40	50	65	80	96	
Minimum Spacing	S _{min}	[mm]	35	40	50	65	80	96	
Minimum Member Thickness	h _{min}	[mm]		hef + 30 m	nm ≥ 100 mi	m	he	hef + 2d ₀	
h _{ef,max} = 12d	<u>.</u>	•	•				•		
Depth of drill hole	h ₀	[mm]	96	120	144	192	240	288	
Minimum Edge Distance	C _{min}	[mm]	50	60	70	95	120	145	
Minimum Spacing	S _{min}	[mm]	50	60	70	95	120	145	
Minimum Member Thickness	h _{min}	[mm]		hef +30 n	nm ≥100 mr	n	he	f + 2d ₀	

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2022-07-21 Updated: 2022-07-21

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, www.wkret-met.com

PRODUCT DATA SHEET - WCF-VESF/WCF-VESF-E

Section 7. CHARACTERISTIC RESISTANCE - COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS

Characteristic Resistance - Combined Pullout & Concrete Cone Failure Using Threaded Rods Working life of 50 years											
Size				M8	M10	M12	M16	M20	M24		
Characteristic Bond Resistance in -40°C to 80°C	n Uncracked Concrete	$ au_{ ext{Rk,uncr}}$	N/mm²	10.0	8.0	9.0	9.5	8.5	8.5		
Installation Factor	Dry Concrete Wet Concrete Flooded Holes	Y _{inst}	[-]	1.8							
			C30/37	30/37 1.12							
Factor for Concrete		Ψ_{c}	C35/45	1.19							
			C50/60				1.30				

Section 8. SPLITTING FAILURE

Splitting Failure									
Size			M8	M10	M12	M16	M20	M24	
Edge Distance	C _{cr,sp}	mm	2hef			1.5hef			
Spacing	S _{cr,sp}	mm	4hef				3hef		

Section 9. RESISTANCE VALUES FOR THREADED ROD IN UNCRACKED CONCRETE -50 YEARS WORKING LIFE

Resistance Values for Threaded Rod in Uncracked Concrete - Working Life of 50 Years Combined Pullout & Concrete Cone Failure and Concrete Cone Failure

Temperature Range: -40°C to 80°C

Temperature Range: -40°C to 80°C										
Property		Jnit	Anchor Diameter							
Floperty	,	Jilit	M8	M10	M12	M16	M20	M24		
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	64	80	96	128	160	192		
Design Resistance	N _{Rd}	kN	8.5	11.0	18.0	33.5	47.0	68.0		
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210		
Design Resistance	N _{Rd}	kN	11.0	12.5	20.5	33.5	50.0	74.5		
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	288		
Design Resistance	N _{Rd}	kN	13.0	16.5	27.0	50.5	71.0	102.5		

- 1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered the lowest value controls.
- 2. Resistance values are for single anchors without close edges or eccentric loading considerations.
- 3. Tabulated values correspond to the above stated temperature range and installation conditions only.
- 4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.
- 5. The compressive strength of the concrete ($f_{ck,cylinder}$) is assumed to be 20 N/mm .
- 6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, <u>www.wkret-met.com</u>

PRODUCT DATA SHEET - WCF-VESF/WCF-VESF-E

Section 10. THREADED RODS - CHARACTERISTIC VALUES FOR STEEL FAILURE (TENSION)

Threaded Rods - Characteristic Values for S	teel Failure (Tension)							
Size			M8	M10	M12	M16	M20	M24
Steel Grade 5.8	$N_{Rk,s}$	kN	18	29	42	79	123	177
Partial Safety Factor	Y _{Ms}	[-]	1.50					
Steel Grade 8.8	$N_{Rk,s}$	kN	29 46 67 126 196				282	
Partial Safety Factor	Y _{Ms}	[-]	1.50					
Steel Grade 10.9*	N _{Rk,s}	kN	37	58	84	157	245	353
Partial Safety Factor	Y _{Ms}	[-]				1.40		
Stainless Steel Grade A4-70	$N_{Rk,s}$	kN	26	41	59	110	172	247
Partial Safety Factor	Y _{Ms}	[-]				1.90		
Stainless Steel Grade A4-80	$N_{Rk,s}$	kN	29	46	67	126	196	282
Partial Safety Factor	Y _{Ms}	[-]	1.60					
Stainless Steel Grade 1.4529	N _{Rk,s}	kN	26	41	59	110	172	247
Partial Safety Factor	Y _{Ms}	[-]		<u> </u>		1.50		

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Section 11. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR – WITHOUT LEVER ARM)

hreaded Rods - Characteristic Values for Steel Failure (Shear – without lever arm)									
Size			M8	M10	M12	M16	M20	M24	
Steel Grade 5.8	$V_{Rk,s}$	kN	9	15	21	39	61	88	
Partial Safety Factor	Y _{Ms}	[-]				1.25			
Steel Grade 8.8	$V_{Rk,s}$	kN	15	5 23 34 63 98 :				141	
Partial Safety Factor	Y _{Ms}	[-]	1.25						
Steel Grade 10.9*	$V_{Rk,s}$	kN	18	29	42	79	123	177	
Partial Safety Factor	Y _{Ms}	[-]				1.50			
Stainless Steel Grade A4-70	$V_{Rk,s}$	kN	13	20	30	55	86	124	
Partial Safety Factor	Y _{Ms}	[-]				1.56			
Stainless Steel Grade A4-80	$V_{Rk,s}$	kN	15	23	34	63	98	141	
Partial Safety Factor	Y _{Ms}	[-]	1.33						
Stainless Steel Grade 1.4529	$V_{Rk,s}$	kN	13	20	30	55	86	124	
Partial Safety Factor	Y _{Ms}	[-]				1.25			

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Section 12. THREADED RODS - CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR - WITH LEVER ARM)

Threaded Rods - Characteristic Values for	r Steel Failure (Shear – wi	ith lever a	rm)					
Size			M8	M10	M12	M16	M20	M24
Steel Grade 5.8	$M^0_{Rk,s}$	N.m	19	37	66	166	325	561
Partial Safety Factor	Y _{Ms}	[-]	1.25					
Steel Grade 8.8	$M^0_{Rk,s}$	N.m	30	60	105	266	519	898
Partial Safety Factor	y_{Ms}	[-]	1.25					
Steel Grade 10.9*	$M^0_{Rk,s}$	N.m	37	75	131	333	649	1123
Partial Safety Factor	Y _{Ms}	[-]	1.50					
Stainless Steel Grade A4-70	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786
Partial Safety Factor	y_{Ms}	[-]				1.56		

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2022-07-21 Updated: 2022-07-21

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów 71.00 fpz. +48.24.238.01.73 Infolioja; 801.477.477 wyszy wkrot mot

tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, <u>www.wkret-met.com</u>

PRODUCT DATA SHEET - WCF-VESF/WCF-VESF-E

Stainless Steel Grade A4-80	$M^0_{Rk,s}$	N.m	30	60	105	266	519	898
Partial Safety Factor	y_{Ms}	[-]	1.33					
Stainless Steel Grade 1.4529	$M^0_{Rk,s}$	N.m	26 52 92 233 454 78				786	
Partial Safety Factor	Y _{Ms}	[-]	1.25					
Concrete pryout failure								
Factor k **			2					
Partial Safety Factor	,	Умс	1.8					

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Section 13. IMPORTANT NOTES

Important Notes:

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.

^{**} K Value from TR029 Design of bonded anchors pt 5.2.3.3